

Conic Section: General

Basic Level

The equation $2x^2 + 3y^2 - 8x - 18y + 35 = k$ represents [IIT Screening 1994] (a) No locus, if k > 0 (b) An ellipse, if k < 0(c) A point, if k = 0(d) A hyperbola, if k > 0The equation $14x^2 - 4xy + 11y^2 - 44x - 58y + 71 = 0$ represents 2. [BIT 1986] (a) A circle (b) An ellipse (c) A hyperbola (d) A rectangular hyperbola Eccentricity of the parabola $x^2 - 4x - 4y + 4 = 0$ is 3. [Rajasthan PET 1996] (c) e > 4(d) e = 4 $x^{2} - 4y^{2} - 2x + 16y - 40 = 0$ represents 4. [DCE 1999] (a) A pair of straight lines (b) An ellipse (c) A hyperbola (d) A parabola The centre of the conic represented by the equation $2x^2 - 72xy + 23y^2 - 4x - 28y - 48 = 0$ is 5. (d) $\left(-\frac{11}{25}, -\frac{2}{25}\right)$ (b) $\left(\frac{2}{25}, \frac{11}{25}\right)$ (a) $\left(\frac{11}{15}, \frac{2}{25}\right)$ (c) $\left(\frac{11}{25}, -\frac{2}{25}\right)$ Definition, Standard Equation of Parabola and Terms related to Parabola Basic Level The equation of the parabola with focus (a,b) and directrix $\frac{x}{a} + \frac{y}{b} = 1$ is given by [MP PET 1997] (a) $(ax - by)^2 - 2a^3x - 2b^3y + a^4 + a^2b^2 + b^4 = 0$ (b) $(ax + by)^2 - 2a^3x - 2b^3y - a^4 + a^2b^2 - b^4 = 0$ (c) $(ax - by)^2 + a^4 + b^4 - 2a^3x = 0$ (d) $(ax - by)^2 - 2a^3x = 0$ 7. The equation of the parabola with focus (3,0) and the directrix x + 3 = 0 is [EAMCET 2002] (c) $y^2 = 12x$ (a) $y^2 = 3x$ (b) $y^2 = 2x$ (d) $y^2 = 6x$ The parabola $y^2 = x$ is symmetric about [Kerala (Engg.) 2002] (b) y-axis (c) Both x-axis and y-axis (d) The line y = xThe focal distance of a point on the parabola $y^2 = 16x$ whose ordinate is twice the abscissa, is (d) 12 The points on the parabola $y^2 = 12x$, whose focal distance is 4, are 10. (a) $(2,\sqrt{3}),(2,-\sqrt{3})$ (b) $(1, 2\sqrt{3}), (1, -2\sqrt{3})$ (c) (1, 2) (d) None of these The coordinates of the extremities of the latus rectum of the parabola $5y^2 = 4x$ are 11.

(c) (1/5, 4/5); (1/5, -4/5)

[Rajasthan PET 1991]

(d) None of these

12.

(a) (1/5, 2/5); (-1/5, 2/5) (b) (1/5, 2/5); (1/5, -2/5)

If the vertex of a parabola be at origin and directrix be x + 5 = 0, then its latus rectum is

				Conic Section : Parabola 171
	(a) 5	(b) 10	(c) 20	(d) 40
3.	The equation of the lines	joining the vertex of the parabola y^2	= 6x to the points on it whose absorbance	cissa is 24, is
	(a) $y \pm 2x = 0$	(b) $2y \pm x = 0$	(c) $x \pm 2y = 0$	$(d) 2x \pm y = 0$
4.	PQ is a double ordinate of	of the parabola $y^2 = 4ax$. The locus	of the points of trisection of PQ is	
	(a) $9y^2 = 4ax$	(b) $9x^2 = 4ay$	(c) $9y^2 + 4ax = 0$	(d) $9x^2 + 4ay = 0$
5.	The equation of a parabol	la is $25\{(x-2)^2 + (y+5)^2\} = (3x+4)^2$	$(y-1)^2$. For this parabola	
	(a) Vertex = $(2,-5)$		(b) Focus = $(2,-5)$	
	(c) Directrix has the equ	3x + 4y - 1 = 0	(d) Axis has the equation	on $3x + 4y - 1 = 0$
6.	The co-ordinates of a poi	nt on the parabola $y^2 = 8x$, whose f	focal distance is 4, is	
	(a) (2,4)	(b) (4,2)	(c) $(2,-4)$	(d) $(4,-2)$
7.	The equation of the parab	pola with $(-3,0)$ as focus and $x+5=$	= 0 as directrix, is [Rajastha	an PET 1985, 86, 89; MP PET 1991]
	(a) $x^2 = 4(y+4)$	(b) $x^2 = 4(y-4)$	(c) $y^2 = 4(x+4)$	(d) $y^2 = 4(x-4)$
		Ad	vance Level	
	A double ordinate of the	parabola $y^2 = 8px$ is of length $16p$. The angle subtended by it at the ve	ertex of the parabola is
8.		π	π	(d) None of these
8.	(a) $\frac{\pi}{}$	(b) $\frac{\pi}{}$	(c) —	
8.	(a) $\frac{\pi}{4}$	(b) $\frac{n}{2}$	(c) $\frac{\pi}{3}$. ,
	7	(b) $\frac{\pi}{2}$ focal chord of the parabola $y^2 = 32$.	3	
19.	7	<i>2</i>	3	
	If (2,-8) is at an end of a (a) (32,32) A square has one vertex a	focal chord of the parabola $y^2 = 32$. (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$	x; then the other end of the chord is (c) $(-2,8)$	s (d) None of these
9.	If (2,-8) is at an end of a (a) (32,32) A square has one vertex a ends of the other diagonal	focal chord of the parabola $y^2 = 32x$ (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$ I lie on the parabola, the co-ordinates	(c) (-2,8) ax and the diagonal through the ver of the vertices of the square are	(d) None of these tex lies along the axis of the parabola. If the
9.	If (2,-8) is at an end of a (a) (32,32) A square has one vertex a	focal chord of the parabola $y^2 = 32$. (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$	x; then the other end of the chord is (c) $(-2,8)$	s
9.	If (2,-8) is at an end of a (a) (32,32) A square has one vertex a ends of the other diagonal	focal chord of the parabola $y^2 = 32x$ (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$ I lie on the parabola, the co-ordinates	(c) (-2,8) ax and the diagonal through the ver of the vertices of the square are	(d) None of these tex lies along the axis of the parabola. If the
9.	If (2,-8) is at an end of a (a) (32,32) A square has one vertex a ends of the other diagonal	focal chord of the parabola $y^2 = 32$. (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$. I lie on the parabola, the co-ordinates (b) $(4a,-4a)$	(c) (-2,8) ax and the diagonal through the ver of the vertices of the square are	(d) None of these tex lies along the axis of the parabola. If the (d) (8a,0)
9.	If (2,-8) is at an end of a (a) (32,32) A square has one vertex a ends of the other diagonal (a) (4a,4a)	focal chord of the parabola $y^2 = 32x$ (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$ I lie on the parabola, the co-ordinates (b) $(4a,-4a)$	(c) (-2,8) ax and the diagonal through the ver of the vertices of the square are (c) (0,0)	(d) None of these tex lies along the axis of the parabola. If the standard forms of Parabola Other standard forms of Parabola
9.	If (2,-8) is at an end of a (a) (32,32) A square has one vertex a ends of the other diagonal (a) (4a,4a)	focal chord of the parabola $y^2 = 32$. (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$. I lie on the parabola, the co-ordinates (b) $(4a,-4a)$	(c) (-2,8) ax and the diagonal through the ver of the vertices of the square are (c) (0,0)	(d) None of these tex lies along the axis of the parabola. If the standard forms of Parabola Other standard forms of Parabola
9.	If (2,-8) is at an end of a (a) (32,32) A square has one vertex a ends of the other diagona (a) (4a,4a) A parabola passing through	focal chord of the parabola $y^2 = 32x$ (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$ I lie on the parabola, the co-ordinates (b) $(4a,-4a)$ But the point $(-4,-2)$ has its vertex at the parabola $y^2 = 4a$	(c) (-2,8) ax and the diagonal through the ver of the vertices of the square are (c) (0,0) asic Level the origin and y-axis as its axis. The (c) 10	(d) None of these tex lies along the axis of the parabola. If the distribution (d) (8a,0) Other standard forms of Parabola latus rectum of the parabola is
9. 0.	If (2,-8) is at an end of a (a) (32,32) A square has one vertex a ends of the other diagonal (a) (4a,4a) A parabola passing through	focal chord of the parabola $y^2 = 32x$ (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$ I lie on the parabola, the co-ordinates (b) $(4a,-4a)$ But the point $(-4,-2)$ has its vertex at the parabola $y^2 = 4a$	(c) (-2,8) ax and the diagonal through the ver of the vertices of the square are (c) (0,0) asic Level the origin and y-axis as its axis. The (c) 10	(d) None of these tex lies along the axis of the parabola. If to (d) (8a,0) Other standard forms of Parabola latus rectum of the parabola is (d) 12
9. 0.	If (2,-8) is at an end of a (a) (32,32) A square has one vertex a ends of the other diagona (a) (4a,4a) A parabola passing through (a) 6 The focus of the parabola (a) (4,0)	focal chord of the parabola $y^2 = 32x$ (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$ If lie on the parabola, the co-ordinates (b) $(4a,-4a)$ But the point $(-4,-2)$ has its vertex at the parabola $(-4,-2)$ has its vertex at the p	(c) (-2,8) ax and the diagonal through the ver of the vertices of the square are (c) (0,0) asic Level the origin and y-axis as its axis. The (c) 10 [Raj.	(d) None of these tex lies along the axis of the parabola. If t (d) (8a,0) Other standard forms of Parabola latus rectum of the parabola is (d) 12 asthan PET 1987; MP PET 1988, 1992] (d) (0, -4)
9. 0.	If (2,-8) is at an end of a (a) (32,32) A square has one vertex a ends of the other diagona (a) (4a,4a) A parabola passing through (a) 6 The focus of the parabola (a) (4,0)	focal chord of the parabola $y^2 = 32x$ (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$ I lie on the parabola, the co-ordinates (b) $(4a,-4a)$ B gh the point $(-4,-2)$ has its vertex at the parabola $x^2 = -16y$ is (b) $(0,4)$	(c) (-2,8) ax and the diagonal through the ver of the vertices of the square are (c) (0,0) asic Level the origin and y-axis as its axis. The (c) 10 [Raj.	(d) None of these tex lies along the axis of the parabola. If t (d) (8a,0) Other standard forms of Parabola latus rectum of the parabola is (d) 12 asthan PET 1987; MP PET 1988, 1992] (d) (0, -4)
9. 0. 1. 2.	If (2,-8) is at an end of a (a) (32,32) A square has one vertex a ends of the other diagonal (a) (4a,4a) A parabola passing through (a) 6 The focus of the parabola (a) (4,0) The end points of latus re (a) (a, 2a),(2a,-a)	focal chord of the parabola $y^2 = 32x$ (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$ I lie on the parabola, the co-ordinates (b) $(4a,-4a)$ By the point $(-4,-2)$ has its vertex at the parabola $x^2 = -16y$ is (b) $(0,4)$ bectum of the parabola $x^2 = 4ay$ are	(c) (-2,8) ax and the diagonal through the ver of the vertices of the square are (c) (0,0) asic Level the origin and y-axis as its axis. The (c) 10 [Raj. (c) (-4,0)	(d) None of these tex lies along the axis of the parabola. If the distribution of the parabola is (d) $(8a,0)$ Other standard forms of Parabola latus rectum of the parabola is (d) 12 asthan PET 1987; MP PET 1988, 1992] (d) $(0,-4)$ [Rajasthan PET 1986, 1992] (d) $(-2a,a),(2a,a)$
9. 0. 1. 2.	If (2,-8) is at an end of a (a) (32,32) A square has one vertex a ends of the other diagona (a) (4a,4a) A parabola passing throug (a) 6 The focus of the parabola (a) (4,0) The end points of latus re (a) (a, 2a),(2a,-a) The ends of latus rectum	focal chord of the parabola $y^2 = 32x$ (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$ al lie on the parabola, the co-ordinates (b) $(4a,-4a)$ But the point $(-4,-2)$ has its vertex at the parabola $x^2 = -16y$ is (b) $(0,4)$ bectum of the parabola $x^2 = 4ay$ are (b) $(-a,2a),(2a,a)$	x; then the other end of the chord is (c) $(-2,8)$ x and the diagonal through the ver of the vertices of the square are (c) $(0,0)$ asic Level the origin and y-axis as its axis. The (c) 10 [Raj. (c) $(-4,0)$	(d) None of these tex lies along the axis of the parabola. If the distribution of the parabola is (d) $(8a,0)$ Other standard forms of Parabola latus rectum of the parabola is (d) 12 asthan PET 1987; MP PET 1988, 1992] (d) $(0,-4)$ [Rajasthan PET 1999] (d) $(-2a,a),(2a,a)$ [MP PET 1999]
9. 0. 1. 2. 3.	If (2,-8) is at an end of a (a) (32,32) A square has one vertex a ends of the other diagonal (a) (4a,4a) A parabola passing through (a) 6 The focus of the parabola (a) (4,0) The end points of latus re (a) (a, 2a),(2a,-a) The ends of latus rectum (a) (-4, -2) and (4, 2)	focal chord of the parabola $y^2 = 32$. (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$ I lie on the parabola, the co-ordinates (b) $(4a,-4a)$ But $a = x^2 = -16y$ is (b) $(0, 4)$ Extrem of the parabola $x^2 = 4ay$ are (b) $(-a, 2a), (2a, a)$ of parabola $x^2 + 8y = 0$ are	x; then the other end of the chord is (c) $(-2,8)$ ax and the diagonal through the ver of the vertices of the square are (c) $(0,0)$ asic Level the origin and y-axis as its axis. The (c) 10 [Raj. (c) $(-4,0)$ (c) $(a,-2a)$, $(2a,a)$ (c) $(-4,-2)$ and $(4,-2)$	(d) None of these tex lies along the axis of the parabola. If the distribution of the parabola is (d) $(8a,0)$ Other standard forms of Parabola latus rectum of the parabola is (d) 12 asthan PET 1987; MP PET 1988, 1992] (d) $(0,-4)$ [Rajasthan PET 1999] (d) $(-2a,a),(2a,a)$ [MP PET 1999]
9. 00. 11. 22.	If (2,-8) is at an end of a (a) (32,32) A square has one vertex a ends of the other diagonal (a) (4a,4a) A parabola passing through (a) 6 The focus of the parabola (a) (4,0) The end points of latus re (a) (a, 2a),(2a,-a) The ends of latus rectum (a) (-4, -2) and (4, 2)	focal chord of the parabola $y^2 = 32x$ (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$ al lie on the parabola, the co-ordinates (b) $(4a,-4a)$ But $x^2 = -16y$ is (b) $(0,4)$ bectum of the parabola $x^2 = 4ay$ are (b) $(-a,2a),(2a,a)$ of parabola $x^2 + 8y = 0$ are (b) $(4,-2)$ and $(-4,2)$	x; then the other end of the chord is (c) $(-2,8)$ ax and the diagonal through the ver of the vertices of the square are (c) $(0,0)$ asic Level the origin and y-axis as its axis. The (c) 10 [Raj. (c) $(-4,0)$ (c) $(a,-2a)$, $(2a,a)$ (c) $(-4,-2)$ and $(4,-2)$	(d) None of these tex lies along the axis of the parabola. If the distribution of the parabola is (d) $(8a,0)$ Other standard forms of Parabola latus rectum of the parabola is (d) 12 asthan PET 1987; MP PET 1988, 1992] (d) $(0,-4)$ [Rajasthan PET 1999] (d) $(-2a,a),(2a,a)$ [MP PET 1999]
9.	If (2,-8) is at an end of a (a) (32,32) A square has one vertex a ends of the other diagona (a) (4a,4a) A parabola passing through (a) 6 The focus of the parabola (a) (4,0) The end points of latus re (a) (a, 2a),(2a,-a) The ends of latus rectum (a) (-4,-2) and (4, 2) Given the two ends of the (a) 1	focal chord of the parabola $y^2 = 32$. (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$ I lie on the parabola, the co-ordinates (b) $(4a,-4a)$ But the point $(-4,-2)$ has its vertex at the parabola $x^2 = -16y$ is (b) $(0,4)$ Extrem of the parabola $x^2 = 4ay$ are (b) $(-a,2a),(2a,a)$ of parabola $x^2 + 8y = 0$ are (b) $(4,-2)$ and $(-4,2)$ the latus rectum, the maximum number	(c) (-2,8) ax and the diagonal through the vertof the vertices of the square are (c) (0,0) asic Level the origin and y-axis as its axis. The (c) 10 [Rajitation of the vertices of the square are (c) (-4,0) (c) (-4,0) (c) (-4,-2) and (4,-2) of parabolas that can be drawn is (c) 0	(d) None of these tex lies along the axis of the parabola. If the distribution of the parabola is (d) (8a,0) Other standard forms of Parabola latus rectum of the parabola is (d) 12 asthan PET 1987; MP PET 1988, 1992] (d) (0, -4) [Rajasthan PET 199] (d) (-2a,a),(2a,a) [MP PET 199] (d) (4, 2) and (-4, 2) (d) Infinite
9. 00. 11. 12. 13.	If (2,-8) is at an end of a (a) (32,32) A square has one vertex a ends of the other diagona (a) (4a,4a) A parabola passing through (a) 6 The focus of the parabola (a) (4,0) The end points of latus re (a) (a, 2a),(2a,-a) The ends of latus rectum (a) (-4,-2) and (4, 2) Given the two ends of the (a) 1	focal chord of the parabola $y^2 = 32$. (b) $(32,-32)$ at the vertex of the parabola $y^2 = 4a$ I lie on the parabola, the co-ordinates (b) $(4a,-4a)$ But $a = x^2 = -16y$ is (b) $a = x^2 = -16y$ is (c) $a = x^2 = 4ay$ are (d) $a = x^2 = 4ay$ are (e) $a = x^2 = 4ay$ are (f) $a = x^2 = 4ay$ are (g) $a = x^2 = 4ay$ are (g) $a = x^2 = 4ay$ are (h) $a = x^2 = 4ay$ are	(c) (-2,8) ax and the diagonal through the vertof the vertices of the square are (c) (0,0) asic Level the origin and y-axis as its axis. The (c) 10 [Rajitation of the vertices of the square are (c) (-4,0) (c) (-4,0) (c) (-4,-2) and (4,-2) of parabolas that can be drawn is (c) 0	(d) None of these tex lies along the axis of the parabola. If the distribution of the parabola is (d) 12 asthan PET 1987; MP PET 1988, 1992] (d) $(0, -4)$ [Rajasthan PET 199] (d) $(-2a, a), (2a, a)$ [MP PET 199] (d) $(4, 2)$ and $(-4, 2)$

172 Conic Section : Parabola

27.	Vertex of the parabola $y^2 + 2$	2y + x = 0 lies in the quadrant				[MP PET 1989]
	(a) First	(b) Second	(c)	Third	(d)	Fourth
28.	The vertex of the parabola 3.	$x - 2y^2 - 4y + 7 = 0$ is				[Rajasthan PET 1996]
	(a) (3, 1)	(b) $(-3, -1)$	(c)	(-3, 1)	(d)	None of these
29.	The vertex of parabola $(y-2)$	$^{2} = 16(x-1)$ is				[Karnataka CET 2001]
	(a) (2, 1)	(b) (1, –2)	(c)	(-1, 2)	(d)	(1, 2)
30.	The vertex of the parabola x^2	•				[DCE 1999]
	(a) (-4, 1)	(b) $(4, -1)$	(c)	(-4, -1)	(d)	(4, 1)
31.	The axis of the parabola $9y^2$	•				[MNR 1995]
	(a) $3y = 2$	(b) $x + 3y = 3$	(c)	2x = 3	(d)	y = 3
32.	The directrix of the parabola x	$x^2 - 4x - 8y + 12 = 0 $ is				[Karnataka CET 2003]
	(a) $x = 1$	(b) $y = 0$	(c)	x = -1	(d)	y = -1
33.	The length of the latus rectum	of the parabola $x^2 - 4x - 8y + 12 = 0$	is			[MP PET 2000]
	(a) 4	(b) 6	(c)	8	(d)	10
34.	The latus rectum of the parabo	$la y^2 = 5x + 4y + 1 is$				[MP PET 1996]
	(a) $\frac{5}{4}$	(b) 10	(c)	5	(d)	$\frac{5}{2}$
25	4				(-)	_
35.	(a) (2, 0) is the vertex and y-axi	s the directrix of a parabola then its focu (b) (-2, 0)		(4, 0)	(d)	[MNR 1981] (-4, 0)
36.		he parabola $4y^2 + 2x - 20y + 17 = 0$ is		(4, 0)	(u)	[MP PET 1999]
50.		ne paracola +y + 2x 20y + 17 = 018	,	1		[MI IEI 1999]
	(a) 3	(b) 6	(c)	$\frac{1}{2}$	(d)	9
37.	The focus of the parabola y^2 :	=4y-4x is				[MP PET 1991]
	(a) (0, 2)	(b) (1, 2)	(c)	(2, 0)	(d)	(2, 1)
38.	Focus of the parabola $(y-2)^2$	=20(x+3) is				[Karnataka CET 1999]
	(a) $(3, -2)$	(b) (2, –3)	(c)	(2, 2)	(d)	(3, 3)
39.	The focus of the parabola y^2	-x - 2y + 2 = 0 is				[UPSEAT 2000]
	(a) $(1/4, 0)$	(b) (1, 2)	(c)	(3/4, 1)	(d)	(5/4, 1)
40.	The focus of the parabola $y =$	$2x^2 + x$ is				[MP PET 2000]
	(a) (0, 0)	(b) $\left(\frac{1}{2},\frac{1}{2}\right)$	(c)	$\left(-\frac{1}{4},0\right)$	(d)	$\left(-\frac{1}{4},\frac{1}{8}\right)$
	(a) (0, 0)	(2,4)	(0)	(4,0)	(u)	(4'8)
41.	The vertex of a parabola is the then its equation is	point (a, b) and latus rectum is of leng	th <i>l</i> . 1	If the axis of the parabola is a	long	the positive direction of y-axis,
	(a) $(x+a)^2 = \frac{l}{2}(2y-2b)$	(b) $(x-a)^2 = \frac{l}{2}(2y-2b)$	(c)	$(x+a)^2 = \frac{l}{4}(2y - 2b)$	(d)	$(x-a)^2 = \frac{l}{8}(2y - 2b)$
42.	$y^2 - 2x - 2y + 5 = 0$ represent	s				[Roorkee 1986, 95]
	(a) A circle whose centre is (1, 1)	(b)	A parabola whose focus is (1	1, 2)	
	(c) A parabola whose directri	$x is x = \frac{3}{2}$	(d)	A parabola whose directrix	is x	$=-\frac{1}{2}$
43.	The length of the latus rectum	of the parabola whose focus is (3, 3) and	dire	ctrix is $3x - 4y - 2 = 0$ is		[UPSEAT 2001]
	(a) 2	(b) 1	(c)	4	(d)	None of these
44.	The equation of the parabola w	whose vertex is at $(2, -1)$ and focus at $(2, -1)$	– 3)i	s		[Kerala (Engg.) 2002]

(a)
$$x^2 + 4x - 8y - 12 = 0$$
 (b) $x^2 - 4x + 8y + 12 = 0$

(b)
$$x^2 - 4x + 8y + 12 = 0$$

(c)
$$x^2 + 8y = 12$$

(d)
$$x^2 - 4x + 12 = 0$$

45. The equation of the parabola with focus (0, 0) and directrix x + y = 4 is [EAMCET 2003]

(a)
$$x^2 + y^2 - 2xy + 8x + 8y - 16 = 0$$

(b)
$$x^2 + y^2 - 2xy + 8x + 8y = 0$$

(c)
$$x^2 + y^2 + 8x + 8y - 16 = 0$$

(d)
$$x^2 - y^2 + 8x + 8y - 16 = 0$$

The equation of the parabola whose vertex and focus lies on the x-axis at distance a and a' from the origin, is [Rajasthan PET 2000] 46.

(a)
$$y^2 = 4(a'-a)(x-a)$$
 (b) $y^2 = 4(a'-a)(x+a)$ (c) $y^2 = 4(a'+a)(x-a)$ (d) $y^2 = 4(a'+a)(x+a)$

(b)
$$y^2 = 4(a'-a)(x+a)$$

(c)
$$y^2 = 4(a' + a)(x - a)$$

(d)
$$y^2 = 4(a' + a)(x + a)$$

The equation of parabola whose vertex and focus are (0, 4) and (0, 2) respectively, is [Rajasthan PET 1987, 1989, 1990, 1991] 47.

(a)
$$y^2 - 8x = 32$$

(b)
$$y^2 + 8x = 32$$

(c)
$$x^2 + 8y = 32$$

(d)
$$x^2 - 8y = 32$$

The equation of the parabola, whose vertex is (-1, -2) axis is vertical and which passes through the point (3, 6) is 48.

(a)
$$x^2 + 2x - 2y - 3 = 0$$
 (b) $2x^2 = 3y$

(b)
$$2x^2 = 3$$

(c)
$$x^2 - 2x - y + 3 = 0$$

The length of the latus rectum of the parabola whose focus is $\left(\frac{u^2}{2g}\sin 2\alpha, -\frac{u^2}{2g}\cos 2\alpha\right)$ and directrix is $y = \frac{u^2}{2\varrho}$, is 49.

(a)
$$\frac{u^2}{g}\cos^2\alpha$$

(b)
$$\frac{u^2}{g}\cos 2\alpha$$

(c)
$$\frac{2u^2}{g}\cos 2\alpha$$
 (d) $\frac{2u^2}{g}\cos^2\alpha$

(d)
$$\frac{2u^2}{g}\cos^2\alpha$$

The equation of the parabola whose axis is vertical and passes through the points (0, 0), (3, 0) and (-1, 4), is 50.

(a)
$$x^2 - 3x - y = 0$$

(b)
$$x^2 + 3x + y = 0$$

(c)
$$x^2 - 4x + 2y = 0$$

(d)
$$x^2 - 4x - 2y = 0$$

If the vertex and the focus of a parabola are (-1, 1) and (2, 3) respectively, then the equation of the directrix is 51.

(a)
$$3x + 2y + 14 = 0$$

(b)
$$3x + 2y - 25 = 0$$

(c)
$$2x - 3y + 10 = 0$$

If the focus of a parabola is (-2, 1) and the directrix has the equation x + y = 3, then the vertex is 52.

(a)
$$(0,3)$$

(b)
$$(-1, 1/2)$$

(c)
$$(-1, 2)$$

(d)
$$(2,-1)$$

The vertex of a parabola is (a, 0) and the directrix is x + y = 3a. The equation of the parabola is 53.

(a)
$$x^2 + 2xy + y^2 + 6ax + 10ay + 7a^2 = 0$$

(b)
$$x^2 - 2xy + y^2 + 6ax + 10ay = 7a^2$$

(c)
$$x^2 - 2xy + y^2 - 6ax + 10ay = 7a^2$$

(d) None of these

The equation of a locus is $y^2 + 2ax + 2by + c = 0$, then 54.

- (a) It is an ellipse
- (b) It is a parabola
- (c) Its latus rectum =a
- (d) Its latus rectum= 2a

If the vertex of the parabola $y = x^2 - 8x + c$ lies on x-axis, then the value of c is 55.

(a)
$$-16$$

(b)
$$-4$$

If the vertex of a parabola is the point (-3, 0) and the directrix is the line x + 5 = 0 then its equation is 56.

(a)
$$y^2 = 8(x+3)$$

(b)
$$x^2 = 8(y+3)$$

(c)
$$y^2 = -8(x+3)$$

(d)
$$y^2 = 8(x+5)$$

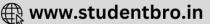
If the parabola $y^2 = 4ax$ passes through (3, 2), then the length of its latusrectum is 57.

- (a) 2/3
- (b) 4/3

(c) 1/3

(d) 4

The extremities of latus rectum of the parabola $(y-1)^2 = 2(x+2)$ are 58.


- (a) $\left(-\frac{3}{2},2\right)$
- (b) (-2,1)

- (c) $\left(-\frac{3}{2},0\right)$
- (d) $\left(-\frac{3}{2},1\right)$

The equation of parabola is given by $y^2 + 8x - 12y + 20 = 0$. Tick the correct options given below 59.

- (a) Vertex (2, 6)
- (b) Focus (0, 6)
- (c) Latus rectum = 4
- (d) axis y = 6

Advance Level

174 Conic Section: Parabola

60.

The length of the latus rectum of the parabola $169\{(x-1)^2 + (y-3)^2\} = (5x - 12y + 17)^2$ is

	(a) $\frac{14}{13}$	(b) $\frac{28}{13}$	(c) $\frac{12}{13}$	(d) None of these
61.	The length of the latus re	ectum of the parabola $x = ay^2 + by$	+c is	
	(a) $\frac{a}{4}$	(b) $\frac{a}{3}$	(c) $\frac{1}{a}$	(d) $\frac{1}{4a}$
62.	If the vertex = $(2, 0)$ and	the extremities of the latus rectum ar	re $(3, 2)$ and $(3, -2)$, then the equation	of the parabola is
	(a) $y^2 = 2x - 4$	(b) $x^2 = 4y - 8$	(c) $y^2 = 4x - 8$	(d) None of these
63.	_		being exterior to the other and the lat n the lines parallel to the common axis	us recta being $4a$ and $4b$. The locus of the is a
	(a) Straight line if $a = $	b (b) Parabola if $a \neq b$	(c) Parabola for all a, b	(d) None of these
64.	A line <i>L</i> passing through then	the focus of the parabola $y^2 = 4(x - x)^2$	- 1) intersects the parabola in two disti	nct points. If ' m ' be the slope of the line L ,
	(a) $-1 < m < 1$	(b) $m < -1 \text{ or } m > 1$	(c) $m \in R$	(d) None of these
				Parametric equations of Parabola
			Basic Level	
65.	Which of the following p	points lie on the parabola $x^2 = 4ay$		[Rajasthan PET 2002]
	(a) $x = at^2, y = 2at$	(b) $x = 2at, y = at$	(c) $x = 2at^2, y = at$	(d) $x = 2at, y = at^2$
66.	The parametric equation	of a parabola is $x = t^2 + 1, y = 2t +$	1. The cartesian equation of its direct	rix is
	(a) $x = 0$	(b) $x + 1 = 0$	(c) $y = 0$	(d) None of these
67.	The parametric represent	tation $(2+t^2,2t+1)$ represents		
	(a) A parabola with foc(c) An ellipse with cent		(b) A parabola with vertex(d) None of these	x at (2, 1)
68.	- · · · · ·	y the equations $x = \sin^2 t$, $y = 2$ co		[EAMCET 1993]
	(a) A portion of a parab	•	(c) A part of a sine graph	(d) A Part of a hyperbola
69.	The curve described para	ametrically by $x = t^2 + t + 1$, $y = t^2 - t$	-t+1 represents	[HT 1999]
	(a) A pair of straight lin	nes (b) An ellipse	(c) A parabola	(d) A hyperbola
	P	osition of a Point, Intersection o	of Line and Parabola, Tangents an	nd Pair of Tangents
			Basic Level	
70.	The equation of the tange	ent at a point $P(t)$ where 't' is any pa	arameter to the parabola $y^2 = 4ax$, is	[MNR 1983]
	(a) $yt = x + at^2$	(b) $y = xt + at^2$	(c) $y = xt + \frac{a}{t}$	(d) $y = tx$
71.	The condition for which	the straight line $y = mx + c$ touches	the parabola $y^2 = 4ax$ is	[MP PET 1997, 2001]
	(a) $a=c$	(b) $\frac{a}{c} = m$	(c) $m = a^2 c$	(d) $m = ac^2$
72.	The line $y = mx + c$ touch	ches the parabola $x^2 = 4ay$, if		[MNR 1973; MP PET 1994, 1999]

(c) $c = -am^2$

CLICK HERE

[MNR 1988]

(d) $c = a/m^2$

(b) c = -a/m

The line y = 2x + c is tangent to the parabola $y^2 = 16x$, if c equals

(a) c = -am

73.

				Conic Section : Parabola 17	75
	(a) -2	(b) -1	(c) 0	(d) 2	
74.	The line $y = 2x + c$ is tangen	at to the parabola $y^2 = 4x$, then c	=	[MP PET 1	996]
	(a) $-\frac{1}{2}$	(b) $\frac{1}{2}$	(c) $\frac{1}{3}$	(d) 4	
75.	If line $x = my + k$ touches th	ne parabola $x^2 = 4ay$, then $k =$		[MP PET 1	995]
	(a) $\frac{a}{m}$	(b) <i>am</i>	(c) am ²	(d) $-am^2$	
76.	The line $y = mx + 1$ is a tange	ent to the parabola $y^2 = 4x$, if	[MNR 1990; K	Kurukshetra CEE 1998; DCE 2000]	
	(a) $m = 1$	(b) $m = 2$	(c) $m = 4$	(d) $m = 3$	
77.	The line $lx + my + n = 0$ will	I touch the parabola $y^2 = 4ax$, if	[Rajasthan PE]	ET 1988; MNR 1977; MP PET 2003]	
	(a) $mn = al^2$	(b) $lm = an^2$	(c) $ln = am^2$	(d) $mn = al$	
78.	The equation of the tangent to	the parabola $y^2 = 4x + 5$ paralle	el to the line $y = 2x + 7$ is	[MNR 1	979]
	(a) $2x - y - 3 = 0$	(b) $2x - y + 3 = 0$	(c) $2x + y + 3 = 0$	(d) None of these	
79.	If $lx + my + n = 0$ is tangent	to the parabola $x^2 = y$, then condi	tion of tangency is	[Rajasthan PET 1	999]
	(a) $l^2 = 2mn$	(b) $l = 4m^2n^2$	(c) $m^2 = 4ln$	(d) $l^2 = 4mn$	
80.	The point at which the line y	$= mx + c$ touches the parabola y^2	=4ax is	[Rajasthan PET 2001]	
	(a) $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$	(b) $\left(\frac{a}{m^2}, \frac{-2a}{m}\right)$	(c) $\left(-\frac{a}{m^2}, \frac{2a}{m}\right)$	(d) $\left(-\frac{a}{m^2}, -\frac{2a}{m}\right)$	
81.	The locus of a foot of perpend	dicular drawn to the tangent of para	abola $y^2 = 4ax$ from focus, is	[Rajasthan PET 1	989]
	(a) $x = 0$	(b) $y = 0$	$(c) y^2 = 2a(x+a)$	(d) $x^2 + y^2(x+a) = 0$	
82.	The equation of tangent at the	e point (1, 2) to the parabola $y^2 =$	4x, is	[Rajasthan PET 1984, 85, 86]	
	(a) $x - y + 1 = 0$	(b) $x + y + 1 = 0$	(c) $x + y - 1 = 0$	(d) $x - y - 1 = 0$	
83.	The tangent to the parabola y	$v^2 = 4ax$ at the point $(a, 2a)$ make	s with x-axis an angle equal to	[SCRA 1	996]
	(a) $\frac{\pi}{3}$	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{2}$	(d) $\frac{\pi}{6}$	
84.	A tangents to the parabola y	$^2 = 8x$ makes an angle of 45 o wi	th the straight line $y = 3x + 5$; then the	the equation of tangent is	
	(a) $2x + y - 1 = 0$	(b) $x + 2y - 1 = 0$	(c) $2x + y + 1 = 0$	(d) None of these	
85.	The equation of the tangent	to the parabola $y^2 = 9x$ which go	es through the point (4, 10) is	[MP PET 2	000]
	(a) $x + 4y + 1 = 0$	(b) $9x + 4y + 4 = 0$	(c) $x - 4y + 36 = 0$	(d) $9x - 4y + 4 = 0$	
86.	The angle of intersection between	ween the curves $y^2 = 4x$ and x^2	= 32y at point $(16, 8)$ is	[Rajasthan PET 1987	, 96]
	(a) $\tan^{-1}\left(\frac{3}{5}\right)$	(b) $\tan^{-1}\left(\frac{4}{5}\right)$	(c) π	(d) $\frac{\pi}{2}$	
87.	The equation of the tangent to	the parabola $y = x^2 - x$ at the po	oint where $x = 1$, is	[MP PET 1	992]
	(a) $y = -x - 1$	(b) $y = -x + 1$	(c) $y = x + 1$	(d) $y = x - 1$	
88.	The point of intersection of th	ne tangents to the parabola $y^2 = 4$	ax at the points t_1 and t_2 is	[Rajasthan PET 2	002]
	(a) $(at_1t_2, a(t_1 + t_2))$	(b) $(2at_1t_2, a(t_1 + t_2))$	(c) $(2at_1t_2, 2a(t_1 + t_2))$	(d) None of these	
89.	The tangents drawn from the	ends of latus rectum of $y^2 = 12x$	meets at	[Rajasthan PET 2000]	
	(a) Directrix	(b) Vertex	(c) Focus	(d) None of these	

	6 Conic Section : Parabo				
90.		ents to $y^2 = 4ax$ always intersect on		<i>(</i> 1)	[Karnataka CET 2000]
0.1	(a) $x = a$	(b) x + a = 0	(c) x + 2a = 0	(d)	x + 4a = 0
91.		intersection of the perpendicular tang			[MP PET 1994
	(a) Axis of the parabola		(b) Directrix of the parabola		
	(c) Focal chord of the p		(d) Tangent at vertex to the p		
92.	The angle between the ta	ingents drawn from the origin to the p	parabola $y^2 = 4a(x-a)$ is	[1	MNR 1994; UPSEAT 1999, 2000
	(a) 90 °	(b) 30°	(c) $\tan^{-1} \frac{1}{2}$	(d)	45 °
93.	The angle between tange	ints to the parabola $y^2 = 4ax$ at the j	points where it intersects with the line x	-y-a =	= 0 , is
	(a) $\frac{\pi}{3}$	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{6}$	(d)	$\frac{\pi}{2}$
94.	The equation of latus recreetum is	ctum of a parabola is $x + y = 8$ and	the equation of the tangent at the vertex	is $x + y$	= 12 , then length of the latu [MP PET 2002
	(a) $4\sqrt{2}$	(b) $2\sqrt{2}$	(c) 8	(d)	$8\sqrt{2}$
95.	If the segment intercepte	d by the parabola $y^2 = 4ax$ with the	line $lx + my + n = 0$ subtends a right an	ngle at the	e vertex, then
	(a) $4al + n = 0$	(b) $4al + 4am + n = 0$	(c) $4am + n = 0$	(d)	al + n = 0
96.	Tangents at the extremiti	es of any focal chord of a parabola in	ntersect		
	(a) At right angles	(b) On the directrix	(c) On the tangent at vertex	(d)	None of these
97.	Angle between two curve	es $y^2 = 4(x+1)$ and $x^2 = 4(y+1)$ is	s		[UPSEAT 2002
	(a) 0°	(b) 90°	(c) 60°	(d)	30 °
98.	The angle of intersection	between the curves $x^2 = 4(y+1)$ ar	and $x^2 = -4(y+1)$ is		[UPSEAT 2002
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{4}$	(c) 0	(d)	$\frac{\pi}{2}$
99.	If the tangents drawn fro	m the point (0, 2) to the parabola y^2	= $4ax$ are inclined at an angle $\frac{3\pi}{4}$, then	n the valu	ne of a is
	(a) 2	(b) −2	(c) 1	(d)	None of these
100.	The point of intersection	of the tangents to the parabola $y^2 =$	4x at the points, where the parameter 't'	has the	value 1 and 2, is
	(a) (3, 8)	(b) (1, 5)	(c) (2, 3)	(d)	(4, 6)
101.	The tangents from the or	igin to the parabola $y^2 + 4 = 4x$ are	inclined at		
	π	π	π	<i>(</i> 1)	π
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{3}$	(d)	2
102.	The number of distinct re	eal tangents that can be drawn from (0	$(0, -2)$ to the parabola $y^2 = 4x$ is		
	(a) One	(b) Two	(c) Zero	(d)	None of these
103.	If two tangents drawn fro	om the point (α, β) to the parabola y^2	$^{2} = 4x$ be such that the slope of one tange	ent is do	uble of the other, then
	(a) $\beta = \frac{2}{9}\alpha^2$	(b) $\alpha = \frac{2}{9}\beta^2$	(c) $2\alpha = 9\beta^2$	(d)	None of these
104.	If $y + b = m_1(x + a)$ and	$1y + b = m_2(x + a)$ are two tangents to	o the parabola $y^2 = 4ax$, then		
	(a) $m_1 + m_2 = 0$	(b) $m_1 m_2 = 1$	(c) $m_1 m_2 = -1$	(d)	None of these
105.	If $y = mx + c$ touches the	the parabola $y^2 = 4a(x+a)$, then			
	(a) $c = \frac{a}{m}$	(b) $c = am + \frac{a}{m}$	(c) $c = a + \frac{a}{m}$	(d)	None of these

CLICK HERE >>

106.	The angle between the ta	angents drawn from a point $(-a, 2a)$ to	$y^2 = 4ax$ is		
	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{2}$	(c) $\frac{\pi}{3}$	(d)	$\frac{\pi}{6}$
107.	The tangents to the parab	pola $y^2 = 4ax$ at $(at_1^2, 2at_1)$; (at_2^2, at_2)) intersect on its axis, then		[EAMCET 1995]
	(a) $t_2 = t_2$	(b) $t_1 = -t_2$	(c) $t_1 t_2 = 2$	(d)	$t_1 t_2 = -1$
108.	If perpendiculars are dra	wn on any tangent to a parabola $y^2 = 4$	$4ax$ from the points $(a \pm k, 0)$ on the ax	xis. The c	lifference of their squares is
	(a) 4	(b) 4 <i>a</i>	(c) 4k	(d)	4ak
109.	The straight line $kx + y$	= 4 touches the parabola $y = x - x^2$,	if		
	(a) $k = -5$	(b) $k = 0$	(c) $k = 3$	(d)	k takes any real value
110.	If a tangent to the parabo	ola $y^2 = ax$ makes an angle 45° with	x-axis, its points of contact will be		
	(a) $(a/2, a/4)$	(b) $(-a/2, a/4)$	(c) $(a/4, a/2)$	(d)	(-a/4, a/2)
111.	The equations of commo	on tangent to the parabola $y^2 = 4ax$ an	$d x^2 = 4by is$		
	(a) $xa^{1/3} + yb^{1/3} + (a^{1/3} + b^{1/3} + a^{1/3} + b^{1/3} + b^{1/3} + a^{1/3} + a^{1/3}$	$b)^{2/3}=0$	(b) $\frac{x}{a^{1/3}} + \frac{y}{b^{1/3}} + \frac{1}{(ab)^{2/3}}$	= 0	
	(c) $xb^{\frac{1}{3}} + ya^{\frac{1}{3}} - (ab)^{\frac{2}{3}}$	= 0	(d) $\frac{x}{b^{1/3}} + \frac{y}{a^{1/3}} - \frac{1}{(ab)^{2/3}}$	= 0	
112.	The range of values of λ	A for which the point $(\lambda,-1)$ is exterior t	so both the parabolas $y^2 = x \mid \text{is}$		
	(a) (0, 1)	(b) (-1, 1)	(c) (-1, 0)	(d)	None of these
		Adv	ance Level		
113.	The line $x \cos \alpha + y \sin \alpha$	$\alpha = p$ will touch the parabola $y^2 = 4a$	a(x+a), if		
	(a) $p \cos \alpha + a = 0$	(b) $p\cos\alpha - a = 0$	(c) $a\cos\alpha + p = 0$	(d)	$a\cos\alpha - p = 0$
114.	If the straight line $x + y$	= 1 touches the parabola $y^2 - y + x =$	0, then the coordinates of the point of	f contact	are
					[Rajasthan PET 1991]
	(a) (1, 1)	(b) $\left(\frac{1}{2}, \frac{1}{2}\right)$	(c) (0, 1)	(d)	(1, 0)
115.	The equation of commor	a tangent to the circle $x^2 + y^2 = 2$ and	parabola $y^2 = 8x$ is		[Rajasthan PET 1997]
	(a) $y = x + 1$	(b) $y = x + 2$	(c) $y = x - 2$	(d)	y = -x + 2
116.	The equation of the com	mon tangent to the curves $y^2 = 8x$ and	1 xy = -1 is		[IIT Screening 2002]
	(a) $3y = 9x + 2$	(b) $y = 2x + 1$	(c) $2y = x + 8$	(d)	y = x + 2
117.	Two common tangents to	to the circle $x^2 + y^2 = 2a^2$ and parabol	a $y^2 = 8ax$ are		[AIEEE 2002]
	(a) $x = \pm (y + 2a)$	(b) $y = \pm (x + 2a)$	(c) $x = \pm (y + a)$	(d)	$y = \pm (x + a)$
118.	If the line $lx + my + n =$	0 is a tangent to the parabola $y^2 = 4a$	x, then locus of its point of contact is		[Rajasthan PET 1997]
	(a) A straight line	(b) A circle	(c) A parabola	(d)	Two straight lines
119.	The tangent drawn at any	y point P to the parabola $y^2 = 4ax$ me	ets the directrix at the point K , then the [Rajasthan PET 1996, 200	-	hich KP subtends at its focus is
	(a) 30°	(b) 45°	(c) 60°	(d)	90 °

120. The point of intersection of tangents at the ends of the latus rectum of the parabola $y^2 = 4x$ is [IIT 1994; Kurukshetra CEE 1998]

178	Conic Section : Parabol	a		
	(a) (1, 0)	(b) (-1, 0)	(c) (0, 1)	(d) (0, -1)
121.	If y_1, y_2 are the ordinates	of two points P and Q on the parab	pola and y_3 is the ordinate of the poi	int of intersection of tangents at P and Q , the
	(a) y_1, y_2, y_3 are in A. I	P. (b) y_1, y_3, y_2 are in A. P.	(c) y_1, y_2, y_3 are in G.1	P. (d) y_1, y_3, y_2 are in G. P.
122.	If the tangents at P and Q	on a parabola meet in T, then SP,S'	T and SQ are in	
	(a) A. P.	(b) G. P.	(c) H. P.	(d) None of these
123.		_	nd the tangent at the vertex is $x - y$	
	(a) $x^2 + y^2 - 2xy - 4x$	z + 4y - 4 = 0	(b) $x^2 + y^2 - 2xy + 4$	x - 4y - 4 = 0
	(c) $x^2 + y^2 + 2xy - 4x$	x + 4y - 4 = 0	(d) $x^2 + y^2 + 2xy - 4$	4x - 4y + 4 = 0
124.	The two parabolas $y^2 = 4$	$4x$ and $x^2 = 4y$ intersect at a point	P, whose abscissae is not zero, such	h that
	(a) They both touch each	h other at P		
	(b) They cut at right ang			
		curve at <i>P</i> make complementary ar	ngles with the x-axis	
125.	. ,	centre lying on the focus of the nor	capola $v^2 = 2\pi r$ such that it touched	es the directrix of the parabola. Then, a poin
123.	of intersection of the circl		abola $y = 2px$ such that it touche	ES the directify of the parabola. Then, a point
		(b) $\left(\frac{p}{2}, -p\right)$	(c) $\left(\frac{-p}{2}, p\right)$	(d) $\left(\frac{-p}{2}, -p\right)$
	(a) $\left(\frac{p}{2},p\right)$	(b) $\left(\frac{1}{2}, -p\right)$	(c) $\left(\frac{1}{2}, p\right)$	(d) $\left(\frac{1}{2}, -p\right)$
126.	The angle of intersection	of the curves $y^2 = 2x / \pi$ and $y =$	$\sin x$, is	[Roorkee Qualifying 1998
	(a) $\cot^{-1}(-1/\pi)$	(b) $\cot^{-1} \pi$	(c) $\cot^{-1}(-\pi)$	(d) $\cot^{-1}(1/\pi)$
127.	P is a point. Two tangent	s are drawn from it to the parabola	$y^2 = 4x$ such that the slope of one	e tangent is three times the slope of the other
	The locus of <i>P</i> is			
	(a) A straight line	(b) A circle	(c) A parabola	(d) An ellipse
128.	The parabola $y^2 = kx$ ma	kes an intercept of length 4 on the l		
	(a) $\frac{\sqrt{105} - 5}{10}$	(b) $\frac{5 - \sqrt{105}}{10}$	(c) $\frac{5+\sqrt{105}}{10}$	(d) None of these
			10	
129.	The triangle formed by th	e tangents to a parabola $y^2 = 4ax$	at the ends of the latus rectum and the	ne double ordinates through the focus is
	(a) Equilateral		(b) Isosceles	
120	(c) Right-angled isoscel		· · · · · · · · · · · · · · · ·	value of a for its classification
130.		nt at the vertex of the parabola x^2		
	(a) $x = -2$	(b) $x = 2$	(c) $y = 2$	(d) $y = -2$
131.	_		gents to the parabola $x^2 - 8x + 2y$	
	(a) $2y - 15 = 0$	(b) $2y + 15 = 0$	(c) $2x+9=0$	(d) None of these
132.	If P,Q,R are three points	on a parabola $y^2 = 4ax$, whose ore	dinates are in geometrical progression	on, then the tangents at P and R meet on
	(a) The line through Q p		(b) The line through Q	•
	(c) The line joining Q to		The line joining Q to the	
133.	The tangents at three pointriangles ABC and PQR re	•	4x; taken in pairs intersect at the p	points P , Q and R . If Δ , Δ' be the areas of the
	(a) $\Delta = 2\Delta'$	(b) $\Delta' = 2\Delta$	(c) $\Delta = \Delta'$	(d) None of these

134. If the line y = mx + a meets the parabola $y^2 = 4ax$ in two points whose abscissa are x_1 and x_2 , then $x_1 + x_2$ is equal to zero if

(c) m = 2

CLICK HERE

(d) m = -1/2

(b) m = 1

(a) m = -1

135.	Two tangents of the parabola the two tangents is	$y^2 = 8x$, meet the tangent at its ver	tex in the points P and Q . If PQ	= 4 , locus	s of the point of intersection o
	(a) $y^2 = 8(x+2)$	(b) $y^2 = 8(x-2)$	(c) $x^2 = 8(y-2)$	(d)	$x^2 = 8(y+2)$
136.	If perpendicular be drawn fro difference of their squares is	om any two fixed points on the axis	of a parabola at a distance d from	the focus	on any tangent to it, then the
	(a) $a^2 - d^2$	(b) $a^2 + d^2$	(c) 4 <i>ad</i>	(d)	2ad
137.	Two straight lines are perpentation Their point of intersection lies	ndicular to each other. One of them t s on the line	ouches the parabola $y^2 = 4a(x + a)$	a) and the	other touches $y^2 = 4b(x+b)$
	(a) x - a + b = 0	(b) $x + a - b = 0$	(c) x + a + b = 0	(d)	x - a - b = 0
138.	The point (a, 2a) is an interibelongs to the open interval	ior point of the region bounded by t	the parabola $y^2 = 16x$ and the do	uble ordin	ate through the focus. Then a
	(a) $a < 4$	(b) $0 < a < 4$	(c) $0 < a < 2$	(d)	a > 4
139.	The number of points with i $y^2 = 4x$ is	integral coordinates that lie in the in	sterior of the region common to t	he circle	$x^2 + y^2 = 16$ and the parabola
	(a) 8	(b) 10	(c) 16	(d)	None of these
			Normals in differe	nt forms,	Intersection of Normals
		n ·		,	J
		Basic	: Level		
140.	The maximum number of nor	mal that can be drawn from a point to	a parabola is		[MP PET 1990
	(a) 0	(b) 1	(c) 2	(d)	3
141.	The centroid of the triangle for	ormed by joining the feet of the norma	als drawn from any point to the par	abola y ² =	=4ax, lies on
	(a) Awig	(h) Dinactuir	(a) Latus reaturn	(4)	[MP PET 1999
1.42	(a) Axis	(b) Directrix ormal to the parabola $y^2 = -8x$, the	(c) Latus rectum	(a)	Tangent at vertex
142.	in the line $2x + y + k = 0$ is in (a) -16	ormal to the parabola $y = -8x$, the (b) -8	(c) -24	(d)	[Rajasthan PET 1986, 1997
143.	` '	= 8x at which the normal is inclined	. ,	, ,	[MP PET 1993]
143.					
	(a) $(6, -4\sqrt{3})$	(b) $(6, 4\sqrt{3})$	(c) $(-6, -4\sqrt{3})$, ,	$(-6, 4\sqrt{3})$
144.	If the normals at two points <i>F</i> is	P and Q of a parabola $y^2 = 4ax$ inters	sect at a third point R on the curve,	then the p	product of ordinates of P and Q
	(a) $4a^2$	(b) $2a^2$	(c) $-4a^2$	(d)	$8a^2$
145.	The equation of normal to the	e parabola at the point $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$, is			[Rajasthan PET 1987
	(a) $y = m^2 x - 2mx - am^3$	(b) $m^3y = m^2x - 2am^2 - a$	(c) $m^3y = 2am^2 - m^2x + a$	(d)	None of these
146.	At what point on the parabola	$y^2 = 4x$, the normal makes equal a	ngles with the coordinate axes		[Rajasthan PET 1994
	(a) (4,4)	(b) (9,6)	(c) $(4, -4)$	(d)	(1,-2)
147.	The slope of the normal at the	e point $(at^2, 2at)$ of the parabola $y^2 =$	=4ax, is		[MNR 1991; UPSEAT 2000]
	(a) $\frac{1}{t}$	(b) <i>t</i>	(c) -t	(d)	$-\frac{1}{t}$
148.	The normal at the point $(bt_1^2, 2)$	$(2bt_1)$ on a parabola meets the parabola	a again in the point $(bt_2^2, 2bt_2)$, the	n	
					PET 2003: AIEEE 20031

180	Conic	Section	:	Parabo	la

	(a) $t_2 = -t_1 - \frac{2}{t_1}$	(b) $t_2 = -t_1 + \frac{2}{t_1}$	(c) $t_2 = t_1 - \frac{2}{t_1}$	(d)	$t_2 = t_1 + \frac{2}{t_1}$
149.	The normal to the parabola	$y^2 = 8x$ at the point (2, 4) meet	ts the parabola again at the point		[Orissa JEE 2003]
	(a) (-18,-12)	(b) (-18, 12)	(c) (18,12)	(d)	(18, -12)
150.	If a normal drawn to the pa	rabola $y^2 = 4ax$ at the point $(a,$	$(2a)$ meets parabola again on $(at^2, 2at)$, then	the valu	ue of t will be
					[Rajasthan PET 1990]
	(a) 1	(b) 3	(c) -1	(d)	-3
151.	The arithmetic mean of the	ordinates of the feet of the norm	hals from (3, 5) to the parabola $y^2 = 8x$ is		
	(a) 4	(b) 0	(c) 8		None of these
152.	If the normal to $y^2 = 12x$ a	at (3, 6) meets the parabola again	n in $(27, -18)$ and the circle on the normal ch	ord as o	
	2 2		2 2		[Kurukshetra CEE 1998]
	(a) $x^2 + y^2 + 30x + 12y -$		(b) $x^2 + y^2 + 30x + 12y + 27$		
	(c) $x^2 + y^2 - 30x - 12y - $	-27 = 0	(d) $x^2 + y^2 - 30x + 12y - 27$	=0	
153.	The number of distinct norm	mal that can be drawn from $\left(\frac{11}{4}\right)$	$\left(-, \frac{1}{4}\right)$ to the parabola $y^2 = 4x$ is		
	(a) 3	(b) 2	(c) 1	(d)	4
154.	The normal chord of a para	bola $y^2 = 4ax$ at (x_1, x_1) subter	nds a right angle at the		
	(a) Focus	(b) Vertex	(c) End of the latus-rectum	(d)	None of these
155.	The normal at $(ap^2, 2ap)$ or	$y^2 = 4ax$, meets the curve agai	in at $(aq^2, 2aq)$ then		
	(a) $p^2 + pq + 2 = 0$	(b) $p^2 - pq + 2 = 0$	(c) $q^2 + pq + 2 = 0$	(d)	$p^2 + pq + 1 = 0$
156.	The angle between the norm	mals to the parabola $y^2 = 24x$ at	t points (6, 12) and (6, -12) is		
	(a) 30°	(b) 45°	(c) 60°	(d)	90°
			Advance Level		
157.	The centre of a circle passin	ng through the point (0,1) and to	uching the curve $y = x^2$ at (2, 4) is		[IIT 1983]
	(a) $\left(\frac{-16}{5}, \frac{27}{10}\right)$	$(b) \left(\frac{-16}{7}, \frac{5}{10}\right)$	$(c) \left(\frac{-16}{5}, \frac{53}{10}\right)$	(d)	None of these
158.	The length of the normal ch	nord to the parabola $y^2 = 4x$, w	which subtends right angle at the vertex is		[Rajasthan PET 1999]
	(a) $6\sqrt{3}$	(b) $3\sqrt{3}$	(c) 2	(d)	1
159.	Three normals to the parabo	ola $y^2 = x$ are drawn through a p	point $(C,0)$ then		[HT 1991]
	(a) $C = \frac{1}{4}$	(b) $C = \frac{1}{2}$	(c) $C > \frac{1}{2}$	(d)	None of these
160.	If the tangent and normal at	any point P of a parabola meet	the axes in T and G respectively, then		[Rajasthan PET 2001]
	(a) $ST \neq SG = SP$	(b) $ST - SG \neq SP$	(c) $ST = SG = SP$	(d)	ST = SG . SP
161.	The number of distinct norm	mals that can be drawn from (-2,	, 1) to the parabola $y^2 - 4x - 2y - 3 = 0$ is		
	(a) 1	(b) 2	(c) 3	(d)	0

The set of points on the axis of the parabola $y^2 = 4x + 8$ from which the 3 normals to the parabola are all real and different is

CLICK HERE

Conic	Section	· Doro	hola	121
Come	Section	. raia	ижна	101

(a)
$$\{(k,0)|\ k \le -2\}$$

(b)
$$\{(k,0)|\ k>-2\}$$

(c)
$$\{(0,k)| k > -2\}$$

(d) None of these

163. The area of the triangle formed by the tangent and the normal to the parabola $y^2 = 4ax$; both drawn at the same end of the latus rectum, and the axis of the parabola is

(a)
$$2\sqrt{2} a^2$$

(b)
$$2a^2$$

(c)
$$4a^2$$

(d) None of these

164. If a chord which is normal to the parabola $y^2 = 4ax$ at one end subtends a right angle at the vertex, then its slope is

(b)
$$\sqrt{3}$$

(c)
$$\sqrt{2}$$

(d) 2

165. If the normals from any point to the parabola $x^2 = 4y$ cuts the line y = 2 in points whose abscissae are in A.P., then the slopes of the tangents at the three co-normal points are in

(d) None of these

166. If x = my + c is a normal to the parabola $x^2 = 4ay$, then the value of c is

(a)
$$-2am-am^3$$

(b)
$$2am + am^3$$

(c)
$$-\frac{2a}{m} - \frac{a}{m^3}$$

(d)
$$\frac{2a}{m} + \frac{a}{m^3}$$

167. The normal at the point $P(ap^2, 2ap)$ meets the parabola $y^2 = 4ax$ again at $Q(aq^2, 2aq)$ such that the lines joining the origin to P and Q are at right angle. Then

(a)
$$p^2 = 2$$

(b)
$$q^2 = 2$$

(c)
$$p = 2q$$

(d)
$$q = 2p$$

168. If y = 2x + 3 is a tangent to the parabola $y^2 = 24x$, then its distance from the parallel normal is

(a)
$$5\sqrt{5}$$

(b)
$$10\sqrt{5}$$

(c)
$$15\sqrt{5}$$

(d) None of these

169. If P(-3, 2) is one end of the focal chord PQ of the parabola $y^2 + 4x + 4y = 0$, then the slope of the normal at Q is

(a)
$$\frac{-1}{2}$$

(c)
$$\frac{1}{2}$$

170. The distance between a tangent to the parabola $y^2 = 4ax$ which is inclined to axis at an angle α and a parallel normal is

(a)
$$\frac{a\cos\alpha}{\sin^2\alpha}$$

(b)
$$\frac{a \sin \alpha}{\cos^2 \alpha}$$

(c)
$$\frac{a}{\sin \alpha \cos^2 \alpha}$$

(d)
$$\frac{a}{\cos \alpha \sin^2 \alpha}$$

171. If the normal to the parabola $y^2 = 4ax$ at the point $P(at^2, 2at)$ cuts the parabola again at $Q(aT^2, 2aT)$, then

(a)
$$-2 \le \dot{T} \le 2$$

(b)
$$T \in (-\infty, -8) \cup (8, \infty)$$

(c)
$$T^2 < 8$$

(d)
$$T^2 \ge 8$$

Chords

Basic Level

172. The locus of the middle points of the chords of the parabola $y^2 = 4ax$ which passes through the origin is

[Rajasthan PET 1997; UPSEAT 1999]

(a)
$$y^2 = ax$$

(b)
$$y^2 = 2ax$$

(c)
$$y^2 = 4ax$$

(d)
$$x^2 = 4ay$$

173. In the parabola $y^2 = 6x$, the equation of the chord through vertex and negative end of latus rectum, is

(a)
$$y = 2x$$

(b)
$$y + 2x = 0$$

(c)
$$x = 2y$$

(d)
$$x + 2y = 0$$

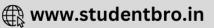
174. From the point (-1, 2) tangent lines are drawn to the parabola $y^2 = 4x$, then the equation of chord of contact is [Roorkee 1994]

(a)
$$v = x+1$$

(b)
$$y = x - 1$$

(c)
$$y + x = 1$$

175. A set of parallel chords of the parabola $y^2 = 4ax$ have their mid points on


404				
182	2 Conic Section : Parabola			
	(a) Any straight line throu	-	(b) Any straight line through	h the focus
1=7	(c) A straight line parallel		(d) Another parabola	
176.			asses through the vertex and makes an angle	
	(a) $4a\cos\theta\csc^2\theta$	(b) $4a\cos^2\theta\csc\theta$	(c) $a\cos\theta\csc^2\theta$	(d) $a\cos^2\theta\csc\theta$
177.	If <i>PSQ</i> is the focal chord of	f the parabola $y^2 = 8x$ such that	at $SP = 6$. Then the length SQ is	
	(a) 6	(b) 4	(c) 3	(d) None of these
178.	The locus of the middle poi	nts of parallel chords of a parab	pola $x^2 = 4ay$ is a	
	(a) Straight line parallel to	the axis		
	(b) Straight line parallel to	the y-axis		
	(c) Circle			
		a bisector of the angles between		
179.	-		$^{2} = 8x$ drawn through the vertex is a parabola	ola whose
	(a) focus is (2, 0)	(b) Latus rectum =8	(c) Focus is (0, 2)	(d) Latus rectum =4
180.	t_1 and t_2 are two points	on the parabola $y^2 = 4x$. If th	e chord joining them is a normal to the para	abola at t_1 , then
	(a) $t_1 + t_2 = 0$	(b) $t_1(t_1 + t_2) = 0$	(c) $t_1(t_1 + t_2) + 2 = 0$	(d) $t_1 t_2 + 1 = 0$
181.	The locus of the middle poi	nts of chords of a parabola whi	ch subtend a right angle at the vertex of the	parabola is
	(a) A circle	(b) An ellipse	(c) A parabola	(d) None of these
182.	AB is a chord of the parab	ola $y^2 = 4ax$. If its equation is	y = mx + c and it subtends a right angle a	t the vertex of the parabola then
	(a) $c = 4am$	(b) $a = 4mc$	(c) $c = -4am$	(d) $a + 4mc = 0$
183.	The length of a focal chord	of parabola $y^2 = 4ax$ making	g an angle θ with the axis of the parabola is	3
	(a) $4a \csc^2 \theta$	(b) $4a \sec^2 \theta$	(c) $a \csc^2 \theta$	(d) None of these
184.	If (a, b) is the mid point of a	a chord passing through the ver	tex of the parabola $y^2 = 4x$, then	
104.			(c) $a^2 = 2b$	(d) $2a = b^2$
105	(a) $a = 2b$	(b) $2a = b$	· /	(d) $2a = b$
185.		2x + y - 4 = 0 of the parabola		
	(a) $\left(\frac{5}{2},-1\right)$	(b) $\left(-1, \frac{5}{2}\right)$	(c) $\left(\frac{3}{2},-1\right)$	(d) None of these
	(2)	(2)	(2)	
186.		at_2) are two variable points on	the curve $y^2 = 4ax$ and PQ subtends a right	ght angle at the vertex, then t_1t_2 is equal
	to (a) -1	(b) -2	(c) -3	(d) -4
187.	` '	· /	of the parabola $y^2 = 4ax$, then the coording	
10/1				
	(a) $(at^2, -2at)$	(b) $(-at^2, -2at)$	(c) $\left(\frac{a}{t^2}, \frac{2a}{t}\right)$	(d) $\left(\frac{a}{t^2}, \frac{-2a}{t}\right)$

If b and c are the lengths of the segments of any focal chord of a parabola $y^2 = 4ax$, then the length of the semi-latusrectum is 188.

(c) $\frac{2bc}{b+c}$ (d) \sqrt{bc} (a) $\frac{b+c}{2}$ (b) $\frac{bc}{b+c}$

The ratio in which the line segment joining the points (4,-6) and (3,1) is divided by the parabola $y^2 = 4x$ is (a) $\frac{-20 \pm \sqrt{155}}{11}$:1 (b) $\frac{-2 \pm 2\sqrt{155}}{11}$:1 (c) $-20 \pm 2\sqrt{155} : 11$ (d) $-2 \pm \sqrt{155} : 11$

If the lengths of the two segments of focal chord of the parabola $y^2 = 4ax$ are 3 and 5, then the value of a will be 190.

189.

	(a) $\frac{15}{8}$	(b)	<u>15</u> 4	(c)	$\frac{15}{2}$	(d)	15
			Advance I	evel			
191.	If 'a' and 'c' are the segments	s of a f	ocal chord of a parabola and b the	semi-	latus rectum, then		[MP PET 1995]
	(a) a, b, c are in A. P.	(b)	<i>a</i> , <i>b</i> , <i>c</i> are in G. P.	(c)	<i>a</i> , <i>b</i> , <i>c</i> are in H. P.	(d)	None of these
192.	The locus of mid point of that	chord	of parabola which subtends right a	ingle	on the vertex will be		[UPSEAT 1999]
	(a) $y^2 - 2ax + 8a^2 = 0$	(b)	$y^2 = a(x - 4a)$	(c)	$y^2 = 4a(x - 4a)$	(d)	$y^2 + 3ax + 4a^2 = 0$
193.	The HM of the segments of a	focal c	thord of the parabola $y^2 = 4ax$ is				
	(a) 4 <i>a</i>	(b)	2a	(c)	a	(d)	a^2
194.	The length of a focal chord of	the pa	rabola $y^2 = 4ax$ at a distance b from	om th	e vertex is c. Then		
	(a) $2a^2 = bc$	(b)	$a^3 = b^2 c$	(c)	$ac = b^2$	(d)	$b^2c = 4a^3$
195.	A chord <i>PP</i> ' of a parabola or respectively. If V is the vertex		e axis of the parabola at O. The VM, VO, VM' are in	feet (of the perpendiculars from P	and	P' on the axis are M and M'
	(a) A.P.		G.P.	` '	H.P.		None of these
196.	The chord AB of the parabola	$y^2 =$	4ax cuts the axis of the parabola a	t C. If	$A = (at_1^2, 2at_2); B = (at_2^2, 2at_2)$	t_2) an	and $AC: AB = 1:3$, then
	$(a) t_2 = 2t_1$	(b)	$t_2 + 2t_1 = 0$	(c)	$t_1 + 2t_2 = 0$	(d)	None of these
197.	The locus of the middle points	s of the	e focal chord of the parabola $y^2 =$	4 <i>ax</i> i	S		
	$(a) y^2 = a(x - a)$	(b)	$y^2 = 2a(x - a)$	(c)	$y^2 = 4a(x-a)$	(d)	None of these
198.	If (4,-2) is one end of a focal	chord	of the parabola $y^2 = x$, then the sle	ope of	the tangent drawn at its other	end	will be
	(a) $-\frac{1}{4}$	(b)	-4	(c)	4	(d)	$\frac{1}{4}$
199.	If (a_1, b_1) and (a_2, b_2) are ex	tremiti	es of a focal chord of the parabola	$y^2 =$	$4ax$, then $a_1a_2 =$		
	(a) $4a^2$	(b)	$-4a^2$	(c)	a^2	(d)	$-a^2$
200.	The length of the chord of the	parab	ola $y^2 = 4ax$ whose equation is y	$-x\sqrt{2}$	$\frac{1}{2} + 4a\sqrt{2} = 0 \text{ is}$		
	(a) $2\sqrt{11}a$	(b)	$4\sqrt{2}a$	(c)	$8\sqrt{2}a$	(d)	$6\sqrt{3}a$
201.	If the line $y = x\sqrt{3} - 3$ cuts the	ne para	bola $y^2 = x + 2$ at P and Q and if	A be t	he point $(\sqrt{3},0)$, then AP. AQ	is	
	(a) $\frac{2}{3}(\sqrt{3}+2)$	(b)	$\frac{4}{3}(\sqrt{3}+2)$	(c)	$\frac{4}{3}(2-\sqrt{3})$	(d)	$2\sqrt{3}$

A triangle ABC of area Δ is inscribed in the parabola $y^2 = 4ax$ such that the vertex A lies at the vertex of the parabola and BC is a focal 202. chord. The difference of the distances of B and C from the axis of the parabola is

(a) $\frac{2\Delta}{a}$ (d) None of these

Diameter of Parabola, Length of tangent, Normal and Subnormal, Pole and Polar

Basic Level

203. The length of the subnormal to the parabola $y^2 = 4ax$ at any point is equal to [UPSEAT 2000]

[Rajasthan PET 1999]

(b) $2\sqrt{2}$

(c) $a/\sqrt{2}$

The polar of focus of a parabola is 204.

(d) 2a

mww.studentbro.in

Conic Section: Parabola 183

184	Conic Section : Parabola					
	(a) x-axis	(b) y-axis	(c)	Directrix	(d)	Latus rectum
205.	Locus of the poles of focal cho	rds of a parabola isof parabola				[E.
	(a) The tangent at the vertex	(b) The axis	(c)	A focal chord	(d)	The directrix
206.	The subtangent, ordinate and so	abnormal to the parabola $y^2 = 4ax$	at a poin	t (different from the origin) a	ıre in	[EAMCET 1993]

(a) A.P. (b) *G.P.* (c) H.P. (d) None of these

Miscellaneous Problems

(d) None of these

[EAMCET 2002]

Basic Level

The equation of a circle passing through the vertex and the extremities of the latus rectum of the parabola $y^2 = 8x$ is 207.

(a)
$$x^2 + y^2 + 10x = 0$$
 (b) $x^2 + y^2 + 10y = 0$ (c) $x^2 + y^2 - 10$

$$+y^2 + 10y = 0$$
 (c) $x^2 + y^2 - 10x = 0$ (d) $x^2 + y^2 - 5x = 0$

(c) $x^2 + y^2 = 80$

An equilateral triangle is inscribed in the parabola $y^2 = 4ax$, whose vertices are at the parabola, then the length of its side is equal to 208.

a)
$$8a$$
 (b) $8a\sqrt{3}$ (c) $a\sqrt{2}$ (d) None of these

209. The area of triangle formed inside the parabola
$$y^2 = 4x$$
 and whose ordinates of vertices are 1, 2 and 4 will be [Rajasthan PET 1990]

(a)
$$\frac{7}{2}$$
 (b) $\frac{5}{2}$ (c) $\frac{3}{2}$ (d) $\frac{3}{4}$

The area of the triangle formed by the lines joining the vertex of the parabola $x^2 = 12y$ to the ends of its latus rectum is

210. The area of the triangle formed by the lines joining the vertex of the parabola
$$x^2 = 12y$$
 to the ends of its latus rectum is

211. The vertex of the parabola
$$y^2 = 8x$$
 is at the centre of a circle and the parabola cuts the circle at the ends of its latus rectum. Then the equation of the circle is

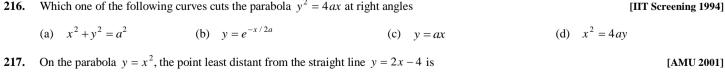
212. The circle
$$x^2 + y^2 + 2\lambda x = 0$$
, $\lambda \in R$, touches the parabola $y^2 = 4x$ externally. Then

(a)
$$\lambda > 0$$
 (b) $\lambda < 0$ (c) $\lambda > 1$ (d) None of these 3. The length of the common chord of the parabola $2y^2 = 3(x+1)$ and the circle $x^2 + y^2 + 2x = 0$ is

(a)
$$\sqrt{3}$$
 (b) $2\sqrt{3}$ (c) $\frac{\sqrt{3}}{2}$ (d) None of these

Advance Level

(b) $x^2 + y^2 = 20$


(a) $x^2 + y^2 = 4$

213.

The ordinates of the triangle inscribed in parabola $y^2 = 4ax$ are y_1, y_2, y_3 , then the area of triangle is

(a)
$$\frac{1}{8a}(y_1 + y_2)(y_2 + y_3)(y_3 + y_1)$$

(b) $\frac{1}{4a}(y_1 + y_2)(y_2 + y_3)(y_3 + y_1)$
(c) $\frac{1}{8a}(y_1 - y_2)(y_2 - y_3)(y_3 - y_1)$
(d) $\frac{1}{4a}(y_1 - y_2)(y_2 - y_3)(y_3 - y_1)$

216. Which one of the following curves cuts the parabola
$$y^2 = 4ax$$
 at right angles

217. On the parabola
$$y = x^2$$
, the point least distant from the straight line $y = 2x - 4$ is

(a) $(1, 1)$ (b) $(1, 0)$ (c) $(1, -1)$ (d) $(0, 0)$

218. Let the equations of a circle and a parabola be $x^2 + y^2 - 4x - 6 = 0$ and $y^2 = 9x$ respectively. Then

Conic Section: Parabola 185

(a) (1,-1) is a point on the common chord of contact

(b) The equation of the common chord is y + 1 = 0

(c) The length of the common chord is 6

(d) None of these

219. P is a point which moves in the x-y plane such that the point P is nearer to the centre of square than any of the sides. The four vertices of the square are $(\pm a, \pm a)$. The region in which P will move is bounded by parts of parabola of which one has the equation

(a) $y^2 = a^2 + 2ax$

(b) $x^2 = a^2 + 2ay$

(c) $y^2 + 2ax = a^2$

(d) None of these

The focal chord to $y^2 = 16x$ is tangent to $(x-6)^2 + y^2 = 2$, then the possible values of the slope of this chord, are 220.

[IIT Screening 2003]

(a) $\{-1, 1\}$

(b) $\{-2, 2\}$

(c) $\{-2, 1/2\}$

(d) $\{2, -1/2\}$

221. Let PQ be a chord of the parabola $y^2 = 4x$. A circle drawn with PQ as a diameter passes through the vertex V of the parabola. If $ar(\Delta PVQ) = 20$ unit ², then the coordinates of P are

(a) (16, 8)

(b) (16, -8)

(c) (-16, 8)

(d) (-16, -8)

A normal to the parabola $y^2 = 4ax$ with slope m touches the rectangular hyperbola $x^2 - y^2 = a^2$, if 222.

(a) $m^6 + 4m^4 - 3m^2 + 1 = 0$ (b) $m^6 - 4m^4 + 3m^2 - 1 = 0$ (c) $m^6 + 4m^4 + 3m^2 + 1 = 0$ (d) $m^6 - 4m^4 - 3m^2 + 1 = 0$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
С	b	b	С	d	a	С	a	b	b	a	С	С	a	b,c	a,c	С	b	a	a,b,c,d
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
b	d	d	С	b	d	d	b	d	a	a	d	С	С	С	С	a	С	d	С
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
b	С	a	b	a	a	С	a	d	a	a	С	b	b,d	a	a	b	a,c	a,b,	b
																		d	
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
С	С	a,b	d	d	a	b	b	С	a	b	С	d	b	a	a	С	b	d	a
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
a	a	b	С	c,d	a	d	a	a	b	b	a	d	d	a	a,b	b	С	a,b	С
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
d	b	b	С	b	b	b	d	a,c	С	a	b	a	С	b	d	b	С	d	b
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
b	b	С	С	a,b	b	С	a	С	С	a	b	a	С	a	С	С	b	a	d
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
a	d	a	d	С	d	С	a	d	d	b	d	a	a	a	d	С	a	С	С
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
a	d	С	С	b	a	a	С	a	С	d	b	b	b	С	a	С	b	d	С
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
С	С	a	d	a	d	d	С	С	a	С	a	b	d	b	b	b	С	С	d
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
b	a	d	С	d	b	С	b	d	С	b	a	a	a	С	b	a	a,c	a,b,	a
																		С	
221	222																		

a,b С

